1、概念
化工生产对环境造成的污染以水污染为突出。含有氰、酚、砷、汞、镉和铅等有毒物质生化需氧量(BOD)和化学耗氧量(COD)高,pH值不稳定,排入水中后会大量消耗水中的溶解氧,导致水域缺氧;废水中有毒物质直接对鱼类、贝类和水生植物造成毒害;有毒重金属还会在生物体内长期积累造成中毒;含氮、磷较高的化肥生产废水排入水中后,引起水域氮、磷含量增加,使藻类等水生植物大量繁殖,出现水域富营养化,造成鱼类窒息而大批死亡。
2、化工废水处理的基本思路
2.1 充分了解废水的成分
化工废水难处理主要是因为废水中成分复杂,每类化工产品的副产物都不尽相同,掌握废水中成分再进行重点治理能达到事半功倍的效果,从而减少废水对环境的污染,实现废水处理的目标。掌握废水成分就需要企业的工作人员熟悉整个生产流程以及生产反应原理,根据实际工艺流程对接受池的水质变化规律进行仔细、确切的观察,准备的判断出废水中有害物质的成分及含量,以便根据废水中实际的成分与危害程度选择合理的方法来进行处理,达到保护环境的目的。
伴随城镇化和工业化步伐的加快,我国污水处理产业得到了快速发展,污水处理能力和技术都在不断进步。污泥处理带来的问题逐渐显现出来,具体表现若污水处理厂未经妥善处理的污泥随意堆放,将会使污染物以污泥的形式向环境中转化,会造成地下水、地表水等水体的二次污染,污泥中所蕴含的能源也会造成浪费,对于其蕴含能源的回收,厌氧消化技术是一条非常重要的路径。
污泥对环境具有危害性,但由于其含有大量的有机物和营养元素,成为污泥资源化利用的重要保证。现有常规的厌氧消化技术很难有较高的沼气转化效率(一般在30%~45%),主要是因为厌氧细菌在水解酸化阶段难以破坏污泥细菌的细胞壁以及木质纤维素结构。于是,各种污泥预处理方法应运而生,主要目的就是破坏污泥中细菌的细胞壁及木质纤维素结构以释放出细胞中存在的有机物、糖类、蛋白质等,提高污泥溶胞效率是强化污泥厌氧消化的关键。
1、剩余污泥的性质
剩余污泥的含水率极高,未经处理的污泥含水率可达97%~99%,其成分组成还存在脂肪类、蛋白质、纤维素、腐殖质等。还含有大量的微生物、有毒有机物、重金属、无机物等。其中,脂肪类、蛋白质、多糖等属于易于厌氧消化降解的物质,可顺利地在产甲烷菌的生化作用下转化成为甲烷;但其中的木质纤维素、腐殖质类及污泥自身的生物细胞则难以被厌氧消化所分解。目前剩余污泥预处理的研究主要集中在两方面,一方面是探索大幅度降低剩余污泥含水率的可能方法;另一方面则是找寻适宜的方法对剩余污泥进行预处理,以改变难降解物质的结构及使细胞破碎,释放出细胞内可代谢的物质,进而提高厌氧消化环节沼气的产量、甲烷的转化效率,并减少消化池的体积和停留时间,以及污泥终处置的量。
在污泥处理阶段,污泥脱水效率的高低将极大地影响污泥的处理量,是后续进行污泥输送、消化和综合利用的重要保证。一般包括重力浓缩、机械脱水、干化、冻融脱水等处理方法,也有一些新方法在不断被人们研究,例如,表面活性剂和生物沥滤的联用、改性玉米芯粉的使用等。实际上这些方法之中有些方法对于强化厌氧消化环节同样具有很大的帮助。而专门针对强化厌氧消化环节的预处理则包含有物理预处理、化学预处理、生物预处理等,其中有些方法还与其他方法联用作为联合预处理。
2、剩余污泥预处理研究
2.1 机械预处理
使用机械设备预处理污泥一般具有结构简单,使用方便,不产生难降解有机物等优点。研究较多的有高压均质法、旋转球磨法、溶胞离心法等。高压均质法是污泥在极高压力下,通常在几十兆帕,低速进入均质机,在其中突然降低压力,导致污泥在压差下产生极强的冲击力,在剧烈的紊动和空化作用下,污泥局部温度升高,使得污泥细胞破碎。旋转球磨法是利用球磨机高速转动,钢制小球搅拌、碰撞污泥,产生剪切力来使得污泥结构发生改变。高压均质法、旋转球磨、溶胞离心等需要使用大型设备,且设备维修等较不方便,虽已有应用,但破解效率与其他方法比较偏低。由于剩余污泥含水率极高,机械法所产生的能量被不必要的消耗,导致其破坏污泥絮体和微生物细胞通常不充分。机械方法的缺点可以通过与其他预处理方法相结合而弥补。SunYuxiao等利用水力旋流器和碱(pH=11)联合预处理获得了良好的效果,VFA增加了23.75%,甲烷产量增加了32.28%。
2.2 物理预处理
剩余污泥物理预处理方法中研究较多的有热解法、微波法、超声波法、聚焦脉冲法等。热解法是常规的一种污泥处理手段,在过去被视为污泥消化前的方法。通过对污泥加热导致微生物的细胞壁因膨胀而破裂,从而使其中的有机物大量释出,也可以降低污泥黏度并增强脱水率。在热解法中,常使用的温度在80℃~180℃,时间为20min~40min,压力为600kPa~2500kPa。通过诸多的研究发现,温度越高,热解效果越好,过高的温度(超过200℃)不但会增加能耗也会产生难降解物质,甚至毒性物质(美拉德反应)。考虑到能耗、容积等因素,采用100℃以下的热解方式较多。整体而言,热解法发展较为成熟,在国内外许多工程上得到应用,但仍然面临着能耗高、加热不均匀、停留时间久等问题。
微波法是以电磁波转化为热能对污泥加热,因其加热速度快、处理效果好、操作容易等优点开始逐渐替代常规的热解法,还易与其他方法进行联合运用。倪晓堂等研究比较了几种敏化剂联合微波和微波-过氧化氢的污泥处理效果发现,以二氧化钛作为敏化剂的微波作用被增强,污泥中C、N、P的释放均有显著增加。王晶等将微波与MEC联合运用处理市政污泥,利用600W微波辐射180s,在0V~1.2V电压下,系统甲烷产量、SCOD、VSS均有显著提高,与对照组相比分别提高了89.4%、56.9%和39.9%。单使用微波法可以获得较好的处理效果,但在高能耗多以寻找适宜的敏化剂或与其他方法联用为方向。
在剩余污泥中,超声波(>20kHz的声波)作用下形成的空化气泡崩溃破裂导致水体超高的流速通过污泥固体表面,产生了超高速的射流。这种射流产生的冲击波能够带来较强的机械剪切力,还伴有一定的热作用、机械作用和化学作用,细胞壁得到破解。超声波法处理污泥的效果由声能量密度和处理时间来决定,是能效较高的处理方法,在国外已有应用。但也面临着耗能较大的问题,需要寻找适宜的参数和方法来降低能耗。汪中宇比较了单频和双频的处理方法对污泥的处理效果,结果表明,相同能耗下双频(20kHz+25kHz)超声波明显优于单频(20kHz或25kHz)超声波的处理效果,且双频超声能量在12000kJ/gTS时,SCOD的溶出率为26.8%,对剰余污泥破解效果及厌氧消化性能的提升理想。
聚焦脉冲法(FP)是高压脉冲电场与微生物细胞膜直接作用,破坏了细胞膜的结构,产生“电穿孔”,这些都可以促使污泥细胞破碎,溶出胞内有机物,电弧的作用也会破坏污泥本身的絮体结构,产生自由基。Rittmann等研究采用聚焦脉冲处理剩余污泥,使得SCOD达到了1.6倍,DOC达到了1.2倍。
2.3 化学预处理
污泥化学预处理法中大致有碱处理法、臭氧氧化、电化学氧化、亚硫酸盐法、过氧化氢、芬顿试剂等方法。碱能使污泥中有机颗粒溶胀、纤维成分溶解,导致微生物细胞破裂。碱处理法能够达到较好的预处理效果,由于处理时都是在pH>10的条件下进行,后续的污泥处理很多时候都要重新调整pH值,大量的消耗药剂,也会产生腐蚀设备的不良影响,目前研究主要与其他方法联合使用。
臭氧也可以作为污泥预处理当中破坏微生物细胞结构的氧化剂,能够提高剩余污泥厌氧发酵的效率,但投加剂的量难以控制,且不具有专门破坏细胞壁膜结构的针对性,在氧化破坏的也会作用于污泥中本身含有的有机物。适量的运用臭氧强氧化性破坏细胞膜,也可以分解污泥当中的一些大分子有机物,都可利于后期的厌氧消化作用。有研究表明,0.088gO3·g-1~0.1gO3·g-1SS的投加量可以取得大的污泥破解效率。但其面临的问题是O3消耗量较大,当使用量较小时发挥的破坏细胞膜(壁)的作用不明显,O3会优先与污泥中胞外的还原性有机物反应,而非破坏细菌细胞膜,而过量反应又会影响厌氧消化产甲烷的效果。赵阳等以次氯酸钠为电解液与污泥混合均匀,加电压20V,持续时间40min,厌氧消化45d,终电化学法的产气量、甲烷的占比都要优于碱处理、热解法、热碱处理。曾丽等选择Ti/PbO2电极对污泥进行电化学氧化,通过原子力显微镜可观察到电解后污泥菌胶团絮状结构被破坏,变为不规则状,细胞破裂。毛细吸水时间降低了90%以上,表明这一过程有效地氧化了胞外聚合物,破坏了了细胞膜的结构,并释放出大量的有机物。
也有学者考虑到氧化剂药品的大量使用不经济,寻找一些工业上的废料,ZanFeixiang等利用亚硫酸盐对微生物细胞壁的破坏作用,用工业中多见的亚硫酸盐废液对剩余污泥进行预处理,结果表明,污泥的水解率提高了1.7倍和甲烷生成势提高了1.2倍。
2.4 生物预处理
生物预处理是指利用微生物相关技术对污泥进行预处理。常见的方法主要是生物酶法。众所周知,酶是一种高效催化剂,由于生物酶具有特异性、高效性,不像氧化剂、酸、碱等物质需要大量加入,少量加入即可取得良好效果,对后续处理的不良影响较小,具有很大的发展空间。通常加入蛋白酶、淀粉酶、纤维素酶等来水解污泥中的相关成分。陈伟等研究表明,加入溶菌酶浓度小于20mg/g时仅水解污泥胞外物质,加大酶量能显著引起污泥破解。溶菌酶用于原污泥水解效果较好,SCOD/TCOD高可达28.14%,后又加入蛋白酶与纤维素酶获得了较好的溶胞效果。
3、结语
对于强化厌氧消化环节的污泥预处理,目前研究都以如何能够高效的破坏细胞壁或溶胞为方向,处理方法主要集中在上述的几个方面,从整体效果来看,都有不足之处,大多技术与工程应用还有一定距离。
1)机械法处理污泥主要依靠的就是设备运行形成的剪切力或压差,运行费用过高,且设备维护量大,整体上不如物理预处理法。目前研究方向为如何优化设备参数或改变设备构造来提高破解效率,或是结合其他方法作为现有处理设备的提标改造。
2)物理预处理法中,热解法已有较多的研究及工程案例,目前研究集中在与其他方法联合运用的情况。微波法潜力较大,但也存在能耗较高的问题。今后应以降低能耗为重点,例如,寻找适合的可循环使用的敏化剂来提高微波的效率,找寻佳工况,强化厌氧消化效果。
3)化学处理法需要大量药剂,对设备存在腐蚀,也不宜直接进入厌氧消化环节,甚至可能会产生有毒有害物质,需要再对污泥进行调整,例如,酸碱法在处理完成后需要重新调整污泥pH值。在寻找适宜的化学药剂上,可尝试使用某些对细胞有破坏作用的工业废料去研究。
4)生物预处理使用生物酶具有其他方法没有的优点,如,不需要大型专用设备,不需要高温,不需要过酸或过碱的条件,不产生二次污染。今后研究方向应在不同类型酶的搭配组合,以及佳的投加量和相应的反应条件,关键是要解决如何大量获得廉价的生物酶制剂,有赖于生物工业的发展。
2.2 选择合理的处理方法
针对含不同成分的废水有不同的废水处理方法。一般采用物理处理法、化学处理法、物理化学法、生物处理法等方法,也有人通过研究发现缺氧水解工艺方法可以很好的处理废水,并达到比较理想的效果。缺氧水解工艺方法处理废水是通过化学作用来抑制好氧微生物的降解,从而使微生物无法存活,从而达到保护环境的目的。利用这一方法,可达到有效处理废水中有毒物质的目的。通过采用一类生化工艺“水解酸化+缺氧+好氧”联合工艺来处理废水具有抗冲击负荷能力高、污泥不易流失、效率高等特点,并且处理过的水完全可达到排放标准的要求,在环境保护方面起到了很大的作用,工艺稳定、可靠,并得到广泛的应用。