天环净化设备有限公司集产品开发、工艺设计、生产安装及销售服务于一体,是一家实力雄厚的发展型企业。
公司始终围绕产品品质的提升、新品开发力度,在经营中不断引进精益生产管理模式,提高企业生产效率和质量管理水平。公司重视科技开发和科学管理模式的推进,现拥有一批高素质的管理人才和工程技术人才。公司更重视人才的引进和培养,吸纳了一批从事水处理设备研发、试制、验证、制造的工程师,培养了一支、敬业向上的技术团队,从而能为您提供更良好的售前、售中及售后服务,并可根据用户的现场实际情况,代为制定适宜的水处理设备及配备方案,做到经济实用,高效,公司产品品质的稳定。
天环净化设备有限公司拥有一支由技术人才、工程师、销售、售后服务人员组成的富有团队创新精神的队伍,坚持对先进技术的不断探索、研究和应用,公司发展步入新的台阶。我公司可根据客户的实际需求,提供从方案设计、生产研制、安装调试、技术培训到售后的整套服务。满足了各界用户的需求,得到了广泛好评。过硬的产品质量使我们敢于承诺客户,客户的满意就是我们的追求。
来水总氮较低,但到处理工艺末端升高较多,在工艺处理过程中,引起总氮升高的只有硝酸及生化池投加的氮源,通过表1数据分析,经过硝酸pH调节后总氮升高较多,而生化后有所减低,稀碱废水使用硝酸作为pH值调节剂,在现有稀碱废水处理流程中无反硝化生物脱氮工艺的情况下,造成排放水中总氮浓度(主要是投加硝酸引入的硝酸盐引起)升高甚至超出排放标准。
4、解决方案
因来水碱性强,pH调节一般采取硝酸、盐酸、硫酸等强酸,硝酸引起总氮升高,而盐酸中氯离子高对生化、MBR膜影响较大,硫酸根对好氧生物处理工艺影响不大,较多废水处理系统采用硫酸进行pH值调节,进入好氧生化处理,系统运转良好,可进行借鉴。
5、可行性分析
5.1 微生物营养需求
稀碱废水处理系统设计时,由于考虑到生产来水中氮源的匮乏,引入硝酸作为pH调节剂的也能对微生物补充充足的氮源。现稀碱废水原水BOD5值在200~500mg/L,对于好氧微生物群体,其所需营养比经验值为BOD5:N:P=100:5:1,则氮源需10~25mg/L,根据实际运行监测,稀碱原水中氮源在5~15mg/L(由来水及超滤硝酸清洗液贡献),不足部分可在接触氧化池中投加营养剂进行补充。
从好氧微生物群体所需营养考虑,稀碱原水中所含氮源,并配合营养剂的使用,完全能满足微生物群体对氮源的需求,可降低因投加硝酸向系统引入过多硝酸盐造成总氮超标的环保压力。
5.2 对生化池的影响
稀碱废水处理生化系统采用接触氧化工艺降解废水中有机污染物,属于好氧生物处理工艺。目前没有资料显示硫酸根离子对好氧生物处理系统存在大的影响,考虑到微生物针对特定环境的适应性,为维持系统运行的稳定,在使用硫酸替代硝酸过程中将采取循序渐进的替代方式,使微生物得到足够时间的驯化,在替代方案实施过程中,配合生物增效剂和营养剂的使用。
5.3 对MBR的影响
硫酸投加入稀碱废水处理系统,针对MBR反应器主要担心有硫酸钙在膜表面沉积造成膜污堵的风险。通过分析,稀碱废水系统来水中钙硬度(以碳酸钙计)在50~100mg/L,折算成Ca2+离子浓度在0.5×103~1.0×103mol/L。经查硫酸钙的溶度积常数为9.1×10-6,如有硫酸钙沉淀析出时,系统中SO42-离子浓度需达到18.2×10-3~9.1×10-3mol/L,即873.6~1747.2mg/L,而稀碱废水来水pH值正常在10.0~12.0,中和至pH值7.0时,消耗硫酸产生的SO42-离子浓度高在480mg/L左右,MBR反应器采用的是超滤膜组件,超滤膜主要用于去除悬浮物、胶体、大分子有机物、细菌以及病毒,对Ca2+离子和SO42-离子截留率小,不会造成两种离子在MBR池的浓度累积。从Ca2+离子和SO42-离子浓度分析,硫酸钙在MBR反应器膜表面的沉积概率小,在整个稀碱废水处理系统流程中,废水进入MBR反应器之前,需要依次经过混凝和絮凝、气浮、接触氧化等处理工序,硫酸绝大部分在混凝池投加,因浓度高形成硫酸钙不溶物,在混凝和絮凝、气浮工序中也将会得到良好的去除。MBR反应器经过连续不断的运行,有机物和无机盐将会造成膜的污染和结垢,导致跨膜压差升高,通量下降。为了稳定运行,须定期对膜组件进行清洗,清洗方式包括在线清洗和离线槽外清洗,清洗包括针对无机物的酸性清洗和针对有机污染物的碱性清洗,MBR反应器膜上有硫酸钙沉积物的污染,可通过正常的酸性清洗进行消除。
综上,硫酸投加入稀碱废水处理系统,针对MBR反应器中硫酸钙在膜表面沉积的风险可控。
随着原油开采的劣质化、重质化,含氧含氮化合物增长趋势异常明显,增加了废水的处理难度。尤其是含氮杂环类化合物,传统的化学法、生物法很难将其完全降解,一旦被排放至土壤、水体、空气中,不仅造成大气、水体等生态环境持久的破坏,会严重威胁人类的饮食安全。在当今资源能源成本高涨与人们环保意识不断增强的双重背景下,有效处理高含油废水,提高企业的生产效率成为该领域的研究热点。许应芊等使用Fe2O3/SBA-15催化剂对高含油废水进行处理,处理后出水的可生化性能明显提高,为后续生物处理创造了良好的条件;陈天翼等利用废备了CuO/沸石催化剂,对高含油废水进行处理,结果表明废水色度的去除率高达99.7粉煤灰制%,CODCr去除率为88.27%;Carmen等研究表明,催化剂的投加量、温度、反应pH值以及H2O2投加量等工艺参数对高含油废水处理效率起着重要的作用。
作者采用新型催化剂钛硅分子筛对喹啉模拟高含油煤气化废水除油渗透汽化处理工艺进行研究,分别考察催化剂投加量、H2O2投加量、pH值和温度等对反应的影响,分析了催化剂的重复利用性能,并确定了佳工艺条件,对反应动力学进行详细研究,以期为实际高含油煤气化废水处理提供理论依据。
1、实验部分
1.1 试剂与仪器
当前,污泥的终处置方式主要包括焚烧和土地填埋处理等。污泥焚烧所需的设备和运行费用都比较高,且焚烧过程中会对周围大气带来很大程度的污染。而污泥用于填埋处理时要求比较高,很多污水处理厂对污泥进行处理后,污泥稳定化和干化率较低,若不对其进行有效处理,必将对环境造成严重的污染。
活性污泥中含有大量的糖类、脂肪和蛋白质等有机物质,这些有机物能够在厌氧条件下发生水解,生成易生物利用的溶解性小分子物质,如甲酸、乙酸、丙酸、丁酸和戊酸等挥发性短链脂肪酸。这些物质可作为有机碳源补充加入污水处理过程中,不仅降低了投资成本,还减少了污泥产量,故污泥发酵产酸成为当前研究的热点。
1、亚硝酸预处理对污泥发酵产酸性能的影响
亚硝酸作为一种很强的杀生剂,能够分解糖、蛋白质、脂肪和脱氧核糖核酸等有机絮体,亚硝酸在随后的脱氮过程中转化为氮气,是一种环保性较好的物质。
马斌等通过用亚硝酸预处理污泥对其发酵产酸进行研究,结果表明,当亚硝酸含量从0mg/L增加到2.04mg/L时,可溶性化学需氧量产量持续增加。与未经处理的污泥相比,内部碳源的产量增加了50%,反硝化效率提高了76%,污泥量减少了87.5%。
由于亚硝酸后转化为氮气,故使用亚硝酸预处理污泥使系统发生发酵和反硝化,使污泥减量的提高系统的反硝化效率。亚硝酸作为一种污水处理的副产物,通过亚硝化很容易获得,故在实际工程中具有很高的应用价值。
2、表面活性剂对污泥发酵产酸性能的影响
表面活性剂不但具有"两亲"作用,还有"增溶"作用。表面活性剂能够使一些脱离污泥表面的大分子物质的水溶性增强,使糖类和蛋白质等大分子有机物溶解,这些物质通过微生物产生的水解酶水解,形成小分子的有机物。微生物的水解过程不断往复进行,直到水解产物可以直接被微生物所吸收。被微生物吸收的有机物进入酸化发酵阶段,终被转化为脂肪酸。表面活性剂可以用来提高污泥的水解速率,为产酸菌提供更多的发酵底物,从而大幅度地提高水解产物在微生物作用下生产有机酸的量。
罗静阳等将烷基糖苷应用到污泥发酵过程中。结果表明:在APG的作用下,不仅增加了挥发酸的产生量,也缩短了发酵时间。当APG量为0.3g/gTS时,短链脂肪酸在第4d时达到大,产酸量为空白样的7.9倍。
吴庆林等将表面活性剂鼠李糖脂用于污泥发酵产酸,结果表明,单独鼠李糖脂存在条件下,挥发酸在第4d时达到大,比污泥空白产算量多出75%,极大提高了污泥产酸率。
3、过硫酸盐对污泥发酵产酸性能的影响
向污泥中加入过硫酸盐,系统中会产生硫酸根自由基,硫酸根自由基的强氧化性能够使污泥絮体结构遭到破坏,进而将污泥所包含的水分进行浓缩,极大地提高了污泥脱水性能。研究发现,过硫酸盐不仅对污泥脱水有很强的效果,还可促进污泥发酵。这是由于过硫酸盐能够破解污泥絮体中的细胞壁,使絮体胞内的多糖、蛋白质和脂肪等有机物质释放到胞外,为污泥进行厌氧消化提供较为充足的有机物质。贞光音等通过使用二价铁激活过硫酸盐来处理污泥,结果发现,污泥经二价铁和过硫酸盐处理后,消化过程中产生的甲烷气体大幅度减少,这是过硫酸盐能够被二价铁激活产生硫酸根自由基,硫酸根自由基具有很强作用,能够破坏产甲烷菌的细胞膜,从而间接地提高系统产算量。
4、发展前景
污泥中含有很多易生物降解的有机物,其主要成分是蛋白质、多糖等,它们作为微生物生存所必需的营养物质,能够在特定的环境条件下,通过微生物的的分解形成有机酸。且在污水脱氮除磷工艺中,若进水COD浓度较低,不能达到反硝化菌和除磷菌生存所需时,就必须在生化处理系统中投加额外的碳源。而污泥发酵过程中产生的短链脂肪酸可作为碳源直接加入系统中,不仅减少了额外碳源的投资成本,也减少了污泥的排放量,具有非常重要的研究价值。
今后的研究中,应试图将两种或多种物质结合应用到污泥发酵产酸过程中,缩短污泥发酵时间,提高系统中短链脂肪酸的产生量。
邻苯二甲酸氢钾;溴化钾、氢氧化钠;无水乙醇、浓硫酸;zhonggesuanjia、喹啉、硫酸银;H2O2;以上试剂均为分析纯;空心钛硅分子筛:工业级。
紫外可见分光光度计:UV-CARY300,扫描范围为200~800nm;分析天平:ME104E;pH计:PBS-3C;恒温鼓风干燥;离心机:TDL-40C;全自动反应釜:Auto-ChemAC-500M。
1.2 实验方法
高含油煤气化废水除油渗透汽化处理在反应釜中进行,用喹啉溶液配制不同COD模拟石油废水,并用质量分数为30%的硫酸调节溶液初始pH值,分别投加不同堆密度的钛硅分子筛催化剂和质量分数为30%的H2O2,低压中温条件下反应一定时间,反应结束后将溶液离心处理15min,并对清液的COD值和喹啉转化率进行测定。采用紫外可见分光光度计对中间产物的波长变化进行分析。