焦化废水是在炼焦过程中产生的一种污染物浓度高、组分复杂、难降解有机物多的有机废水。焦化废水处理普遍采用以活性污泥法为核心的生化处理工艺,生化出水COD指标很难达到排放标准。随着环保要求的日益严格,为了稳定达到钢铁行业废水排放标准,生化出水还需进行深度处理。目前,已经应用于焦化废水处理生产实践的深度处理方法主要有膜法处理、芬顿氧化、臭氧催化氧化和次氯酸钠氧化等方法。
山东钢铁集团日照有限公司焦化废水处理单元是新建焦炉工程的配套水处理系统,出水指标必须达到新的新建企业指标排放标准。为了达到上述指标,该公司采用了目前焦化废水处理工艺流程长、出水指标严格的一套焦化废水处理工艺。
1、焦化废水处理工艺
1.1 完整的焦化废水处理工艺流程
根据进水水质特点和出水水质要求,污水生化处理工艺采用了“AA1/O1-A2/O2工艺”的两级生物脱氮工艺,辅以沉淀池、混合反应、生物流化床等物化处理措施;对生化出水进行氧化处理和回用处理,采用了“臭氧紫外光接触氧化+软化澄清+多介质过滤器+超滤+反渗透”的处理工艺。
完整的焦化废水处理工艺流程包括5个阶段。第1阶段是预处理阶段,焦化废水进入除油池,上部浮油进入轻油池后定期外运,池底重油定期排放,其他废水经过均合池进入旋流反应器后进入初次沉淀池。当生化系统异常时,废水进入事故池,待系统恢复后由事故池进入均和池。第2个阶段为生化处理阶段。来水经过厌氧吸水井、厌氧池、一段缺氧池、一段好氧池、一段沉淀池、二段缺氧池、二段好氧池、二段沉淀池、生物流化床、混合反应池、混凝沉淀池后,进入第3个阶段氧化处理阶段。生化出水进入臭氧紫外光接触氧化池、软化澄清池后,进入第4阶段——深度处理回用阶段,经过过滤器、多介质过滤器、超滤装置、超滤产水池、反渗透装置后,部分进入反渗透产水池后产品水外,部分进入臭氧紫外光接触氧化池、浓水池后浓水外运。第5个阶段是初次沉淀池、一段、二段沉淀池剩余污泥池和混凝沉淀池污泥,全部进入污泥浓缩池、叠螺脱水机进行处理,泥饼外运。
试验过程中也发现单独的使用Fenton法会消耗较多的双氧水,由于双氧水的价格较高,使得处理水的成本增加。由于在反应过程中会产生Fe3+,再加上反应过程残留的Fe2+,会使出水的色度非常高。为了降低单位出水成本、提高反应效率,实际工程中常与其他技术组合使用,如和光化学组合的光Fenton法、与电化学组合的电-Fenton法等。
(2)臭氧氧化法。
臭氧氧化法既是一种高效的消毒技术,又是一种氧化技术,其主要作用原理是臭氧分子与水接触后会产生羟基自由基(OH•)。臭氧氧化法一方面能够对水体起到充氧的作用,一方面能够将难降解的污染物进行分解以提高其生化性。臭氧分子进入水中后,分解产生的羟基自由基(OH•)量很少,工程中必须和其他技术进行结合,如与UV结合,与半导体材料结合,与超声波结合等。
(3)湿式氧化法。
湿式氧化法的反应条件较苛刻,它是在高温高压的条件下以大气中的氧气为氧化剂对废水中的大分子有机物进行降解的过程。湿式氧化法必须在高温高压的条件下才能发生,对反应器的性能提出了更加严格的要求。由于发生湿式氧化法的反应器必须具有耐高温、高压的特点,设备的投资较大,处理水的成本较高。为了降低湿式氧化法的反应条件,近几年也出现了以催化湿式氧化法为代表的高效湿式氧化法。
(4)电催化氧化法。
电化学氧化技术指的是在废水中加入电极,对废水进行通电处理从而产生羟基自由基(OH•)等集团对废水进行氧化的方法。该方法不需要额外的添加催化剂,直接在废水中发生反应,操作也较方便。该技术对设备以及电极的要求非常高,处理不当会产生很多副反应,从而浪费大量的能耗。
(5)超临界水氧化法。
超临界水氧化法是以超临界状态下的水为介质,在高温高压条件下对废水中的有机物进行分解氧化的方法。
3、在难降解工业废水中的应用
炼油厂、化工厂、焦化厂等企业都会产生大量的含酚废水,含酚废水是一种对水环境危害较大的工业废水。工程中一般采用萃取法、吸附法等对含酚废水进行处理,实际运行效果不佳。为了研究氧化技术对含酚废水的处理效果,陈思莉等采用Fenton试剂对自行配置的含酚废水进行处理,讨论了H2O2的投加量、Fe2+催化剂的投加量、试验反应时间、试验用水的pH值这4个因素对含酚废水COD去除效果的影响。试验结果表明,在低浓度双氧水条件下H2O2与Fe2+的配比对COD去除率的影响很大,当H2O2与Fe2+的配比为3时COD的去除率大,在一定的投加范围内,COD的去除率随H2O2的投加量增大而升高,当H2O2的投加量超过临界值后对COD的去除效果影响很小;pH=3时COD的去除率高达90%,随pH的逐渐增大,COD的去除效果逐渐降低;Fenton试剂与含酚废水接触时间越长反应效果越好,COD的去除率越高,当反应时间过大时,COD的去除率会出现缓慢下降的趋势。
制药工业废水具有COD高、可生化性差、色度高等特点,往往难以直接进行生化处理。研究发现,反应器的温度越高对COD的去除率越高;反应时间越长废水的处理效果越好;初始氧分压越高对COD的去除率也越高;在废水中添加均相催化剂能够提高出水效果,添加GuSO4后COD的去除率可提高19%。
常规的生化法很难处理焦化废水中一些难降的多环类有机物,处理水质很难达到国家规定的工业废水排放标准。冯壮壮等设计了1套电催化氧化试验装置,处理某钢铁厂常规工艺处理后的焦化废水,并分别进行了静态试验与动态试验,研究了电流密度、电极板数量、反应器结构对系统的影响。静态试验发现,COD的去除效率与装置的电流密度有关,当电流密度小于100A/m2时,COD的去除效率随电流密度的增大而升高,电流密度大于100A/m2时,COD的去除效率随电流密度的增大反而降低;电极板数量的增多增加了废水与极板的接触面积,从而提高了去除效率。连续运行动态试验结果表明,电流密度为100A/m2、极板数量为4对、反应器水力停留于时间为120min时,对COD的去除率达60%。
造纸废水中的纤维素属于难降解有机物,常规的生化法很难将其去除。李海霞等开发了一种专门用于处理造纸废水的超临界水氧化技术,试验研究了过氧量、反应温度以及压力对废水COD的去除效果的影响。研究结果表明,适当的增加过氧量能够提高COD的去除率;反应器的温度升高,COD的去除率迅速上升,当反应器的温度上升到500℃时COD的去除率高达99%。反应器压力的大小对COD去除效率的影响不明显。
4、结论与展望
氧化技术是一种新型的高效污水处理技术,由于其对难降解污染物降解的彻底性、高效性,已经在国外得到了广泛的应用。氧化技术在我国已经得到了初步的应用,距离广泛的推广还相差甚远。原因是我国氧化技术理论体系还未健全,对氧化技术的研究还未成熟,再加上我国各地的工业废水的水质千差万别,更使得该技术难以推广。
未来的研究方向应从以下3个方面进行:
(1)研究不同有机物氧化的机理。
不同的有机物去除机理是不同的,只要弄清楚了不同有机物的去除机理,才能选用适当的氧化技术。